Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279239

RESUMO

The extracellular matrix (ECM) of the central nervous system (CNS) is an interconnected network of proteins and sugars with critical roles in both homeostasis and disease. In neurological diseases, excessive ECM deposition and remodeling impact both injury and repair. CNS lesions of multiple sclerosis (MS), a chronic inflammatory and degenerative disease, cause prominent alterations of the ECM. However, there are a lack of data investigating how the multitude of ECM members change in relation to each other and how this affects the MS disease course. Here, we evaluated ECM changes in MS lesions compared to a control brain using databases generated in-house through spatial mRNA-sequencing and through a public resource of single-nucleus RNA sequencing previously published by Absinta and colleagues. These results underline the importance of publicly available datasets to find new targets of interest, such as the ECM. Both spatial and public datasets demonstrated widespread changes in ECM molecules and their interacting proteins, including alterations to proteoglycans and glycoproteins within MS lesions. Some of the altered ECM members have been described in MS, but other highly upregulated members, including the SPARC family of proteins, have not previously been highlighted. SPARC family members are upregulated in other conditions by reactive astrocytes and may influence immune cell activation and MS disease course. The profound changes to the ECM in MS lesions deserve more scrutiny as they impact neuroinflammation, injury, and repair.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/metabolismo , Transcriptoma , Matriz Extracelular/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas da Matriz Extracelular/metabolismo
2.
J Neurosci ; 43(25): 4725-4737, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37208177

RESUMO

Aging is a significant risk factor associated with the progression of CNS neurodegenerative diseases including multiple sclerosis (MS). Microglia, the resident macrophages of the CNS parenchyma, are a major population of immune cells that accumulate in MS lesions. While they normally regulate tissue homeostasis and facilitate the clearance of neurotoxic molecules including oxidized phosphatidylcholines (OxPCs), their transcriptome and neuroprotective functions are reprogrammed by aging. Thus, determining the factors that instigate aging associated microglia dysfunction can lead to new insights for promoting CNS repair and for halting MS disease progression. Through single-cell RNA sequencing (scRNAseq), we identified Lgals3, which encodes for galectin-3 (Gal3), as an age upregulated gene by microglia responding to OxPC. Consistently, excess Gal3 accumulated in OxPC and lysolecithin-induced focal spinal cord white matter (SCWM) lesions of middle-aged mice compared with young mice. Gal3 was also elevated in mouse experimental autoimmune encephalomyelitis (EAE) lesions and more importantly in MS brain lesions from two male and one female individuals. While Gal3 delivery alone into the mouse spinal cord did not induce damage, its co-delivery with OxPC increased cleaved caspase 3 and IL-1ß within white matter lesions and exacerbated OxPC-induced injury. Conversely, OxPC-mediated neurodegeneration was reduced in Gal3-/- mice compared with Gal3+/+ mice. Thus, Gal3 is associated with increased neuroinflammation and neurodegeneration and its overexpression by microglia/macrophages may be detrimental for lesions within the aging CNS.SIGNIFICANCE STATEMENT Aging accelerates the progression of neurodegenerative diseases such as multiple sclerosis (MS). Understanding the molecular mechanisms of aging that increases the susceptibility of the CNS to damage could lead to new strategies to manage MS progression. Here, we highlight that microglia/macrophage-associated galectin-3 (Gal3) was upregulated with age exacerbated neurodegeneration in the mouse spinal cord white matter (SCWM) and in MS lesions. More importantly, co-injection of Gal3 with oxidized phosphatidylcholines (OxPCs), which are neurotoxic lipids found in MS lesions, caused greater neurodegeneration compared with injection of OxPC alone, whereas genetic loss of Gal3 reduced OxPC damage. These results demonstrate that Gal3 overexpression is detrimental to CNS lesions and suggest its deposition in MS lesions may contribute to neurodegeneration.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Masculino , Feminino , Camundongos , Animais , Esclerose Múltipla/patologia , Galectina 3/genética , Fosfatidilcolinas , Encefalomielite Autoimune Experimental/patologia , Medula Espinal , Microglia/fisiologia
3.
Cancer Res ; 83(10): 1725-1741, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37067922

RESUMO

Glioblastomas (GBM) are aggressive brain tumors with extensive intratumoral heterogeneity that contributes to treatment resistance. Spatial characterization of GBMs could provide insights into the role of the brain tumor microenvironment in regulating intratumoral heterogeneity. Here, we performed spatial transcriptomic and single-cell analyses of the mouse and human GBM microenvironment to dissect the impact of distinct anatomical regions of brains on GBM. In a syngeneic GBM mouse model, spatial transcriptomics revealed that numerous extracellular matrix (ECM) molecules, including biglycan, were elevated in areas infiltrated with brain tumor-initiating cells (BTIC). Single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing showed that ECM molecules were differentially expressed by GBM cells based on their differentiation and cellular programming phenotypes. Exogeneous biglycan or overexpression of biglycan resulted in a higher proliferation rate of BTICs, which was associated mechanistically with low-density lipoprotein receptor-related protein 6 (LRP6) binding and activation of the Wnt/ß-catenin pathway. Biglycan-overexpressing BTICs developed into larger tumors and displayed mesenchymal phenotypes when implanted intracranially in mice. This study points to the spatial heterogeneity of ECM molecules in GBM and suggests that the biglycan-LRP6 axis could be a therapeutic target to curb tumor growth. SIGNIFICANCE: Characterization of the spatial heterogeneity of glioblastoma identifies regulators of brain tumor-initiating cells and tumor growth that could serve as candidates for therapeutic interventions to improve the prognosis of patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Biglicano/genética , Biglicano/metabolismo , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Análise Espacial , Proliferação de Células , Microambiente Tumoral
4.
Sci Rep ; 12(1): 12761, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882921

RESUMO

Oxidative stress promotes tissue injury in the central nervous system in neurological disorders such as multiple sclerosis (MS). To protect against this, antioxidant enzymes including superoxide dismutase-1 (SOD1), heme oxygenase-1 (HO-1), peroxiredoxin-5 (PRDX5) and glutathione peroxidase-4 (GPX4) may be upregulated. However, whether antioxidant enzyme elevation in mouse models of neurodegeneration corresponds to their expression in human diseases such as MS requires investigation. Here, we analyzed and compared the expression of SOD1, HO-1, PRDX5 and GPX4 in the murine spinal cord of three models of MS: focal lesions induced by (1) oxidized phosphatidylcholine or (2) lysophosphatidylcholine (lysolecithin), and (3) diffuse lesions of experimental autoimmune encephalomyelitis. Notably, CD68+ microglia/macrophages were the predominant cellular populations that expressed the highest levels of the detected antioxidant enzymes. Overall, the expression patterns of antioxidant enzymes across the models were similar. The increase of these antioxidant enzymes was corroborated in MS brain tissue using spatial RNA sequencing. Collectively, these results show that antioxidant capacity is relatively conserved between mouse models and MS lesions, and suggest a need to investigate whether the antioxidant elevation in microglia/macrophages is a protective response during oxidative injury, neurodegeneration, and MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos , Esclerose Múltipla/patologia , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
5.
Nat Commun ; 13(1): 3279, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672409

RESUMO

Invariant NKT (iNKT) cells comprise a heterogeneous group of non-circulating, tissue-resident T lymphocytes that recognize glycolipids, including alpha-galactosylceramide (αGalCer), in the context of CD1d, but whether peripheral iNKT cell subsets are terminally differentiated remains unclear. Here we show that mouse and human liver-resident αGalCer/CD1d-binding iNKTs largely correspond to a novel Zbtb16+Tbx21+Gata3+MaflowRorc- subset that exhibits profound transcriptional, phenotypic and functional plasticity. Repetitive in vivo encounters of these liver iNKT (LiNKT) cells with intravenously delivered αGalCer/CD1d-coated nanoparticles (NP) trigger their differentiation into immunoregulatory, IL-10+IL-21-producing Zbtb16highMafhighTbx21+Gata3+Rorc- cells, termed LiNKTR1, expressing a T regulatory type 1 (TR1)-like transcriptional signature. This response is LiNKT-specific, since neither lung nor splenic tissue-resident iNKT cells from αGalCer/CD1d-NP-treated mice produce IL-10 or IL-21. Additionally, these LiNKTR1 cells suppress autoantigen presentation, and recognize CD1d expressed on conventional B cells to induce IL-10+IL-35-producing regulatory B (Breg) cells, leading to the suppression of liver and pancreas autoimmunity. Our results thus suggest that LiNKT cells are plastic for further functional diversification, with such plasticity potentially targetable for suppressing tissue-specific inflammatory phenomena.


Assuntos
Linfócitos B Reguladores , Células T Matadoras Naturais , Animais , Antígenos CD1d/metabolismo , Autoimunidade , Linfócitos B Reguladores/metabolismo , Galactosilceramidas , Interleucina-10/metabolismo , Fígado/metabolismo , Camundongos
6.
Nat Aging ; 2(6): 508-525, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118444

RESUMO

Microglia are the immune sentinels of the central nervous system with protective roles such as the removal of neurotoxic oxidized phosphatidylcholines (OxPCs). As aging alters microglial function and elevates neurological disability in diseases such as multiple sclerosis, defining aging-associated factors that cause microglia to lose their custodial properties or even become injurious can help to restore their homeostasis. We used single-cell and spatial RNA sequencing in the spinal cord of young (6-week-old) and middle-aged (52-week-old) mice to determine aging-driven microglial reprogramming at homeostasis or after OxPC injury. We identified numerous aging-associated microglial transcripts including osteopontin elevated in OxPC-treated 52-week-old mice, which correlated with greater neurodegeneration. Osteopontin delivery into the spinal cords of 6-week-old mice worsened OxPC lesions, while its knockdown in 52-week-old lesions attenuated microglial inflammation and axon loss. Thus, elevation of osteopontin and other transcripts in aging disorders including multiple sclerosis perturbs microglial functions contributing to aging-associated neurodegeneration.


Assuntos
Microglia , Esclerose Múltipla , Camundongos , Animais , Microglia/patologia , Osteopontina/genética , Envelhecimento/genética , Esclerose Múltipla/patologia , Análise de Sequência de RNA
7.
Nat Neurosci ; 24(4): 489-503, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33603230

RESUMO

Neurodegeneration occurring in multiple sclerosis (MS) contributes to the progression of disability. It is therefore important to identify and neutralize the mechanisms that promote neurodegeneration in MS. Here, we report that oxidized phosphatidylcholines (OxPCs) found in MS lesions, previously identified as end-product markers of oxidative stress, are potent drivers of neurodegeneration. Cultured neurons and oligodendrocytes were killed by OxPCs, and this was ameliorated by microglia. After OxPC injection, mouse spinal cords developed focal demyelinating lesions with prominent axonal loss. The depletion of microglia that accumulated in OxPC lesions exacerbated neurodegeneration. Single-cell RNA sequencing of lesioned spinal cords identified unique subsets of TREM2high mouse microglia responding to OxPC deposition. TREM2 was detected in human MS lesions, and TREM2-/- mice exhibited worsened OxPC lesions. These results identify OxPCs as potent neurotoxins and suggest that enhancing microglia-mediated OxPC clearance via TREM2 could help prevent neurodegeneration in MS.


Assuntos
Glicoproteínas de Membrana/metabolismo , Microglia , Esclerose Múltipla , Degeneração Neural , Fosfatidilcolinas/toxicidade , Receptores Imunológicos/metabolismo , Animais , Humanos , Camundongos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oxirredução , Fosfatidilcolinas/metabolismo
8.
Front Immunol ; 12: 779119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095853

RESUMO

Disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a ubiquitously expressed membrane-bound enzyme that mediates shedding of a wide variety of important regulators in inflammation including cytokines and adhesion molecules. Hepatic expression of numerous cytokines and adhesion molecules are increased in cholestatic liver diseases including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), however, the pathophysiological role of ADAM17 in regulating these conditions remains unknown. Therefore, we evaluated the role of ADAM17 in a mouse model of cholestatic liver injury due to bile duct ligation (BDL). We found that BDL enhanced hepatic ADAM17 protein expression, paralleled by increased ADAM17 bioactivity. Moreover, inhibition of ADAM17 bioactivity with the specific inhibitor DPC 333 significantly improved both biochemical and histological evidence of liver damage in BDL mice. Patients with cholestatic liver disease commonly experience adverse behavioral symptoms, termed sickness behaviors. Similarly, BDL in mice induces reproducible sickness behavior development, driven by the upregulated expression of cytokines and adhesion molecules that are in turn regulated by ADAM17 activity. Indeed, inhibition of ADAM17 activity significantly ameliorated BDL-associated sickness behavior development. In translational studies, we evaluated changes in ADAM17 protein expression in liver biopsies obtained from patients with PBC and PSC, compared to normal control livers. PSC and PBC patients demonstrated increased hepatic ADAM17 expression in hepatocytes, cholangiocytes and in association with liver-infiltrating immune cells compared to normal controls. In summary, cholestatic liver injury in mice and humans is associated with increased hepatic ADAM17 expression. Furthermore, inhibition of ADAM17 activity improves both cholestatic liver injury and associated sickness behavior development, suggesting that ADAM17 inhibition may represent a novel therapeutic approach for treating patients with PBC/PSC.


Assuntos
Proteína ADAM17/metabolismo , Colestase/metabolismo , Comportamento de Doença/fisiologia , Hepatopatias/metabolismo , Fígado/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/metabolismo , Colangite Esclerosante/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Inflamação/metabolismo , Ligadura/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Nat Commun ; 11(1): 4997, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020472

RESUMO

Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Glioma/patologia , Interleucina-33/metabolismo , Animais , Neoplasias Encefálicas/mortalidade , Carcinogênese , Núcleo Celular/metabolismo , Citocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioma/mortalidade , Humanos , Inflamação , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos SCID , Microglia , Análise de Sobrevida , Linfócitos T/metabolismo , Linfócitos T/patologia , Microambiente Tumoral/imunologia
10.
Gastroenterology ; 153(5): 1416-1428.e2, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28802564

RESUMO

BACKGROUND & AIMS: Patients with inflammatory liver disease commonly develop debilitating symptoms, called sickness behaviors, which arise via changes in brain function. Monocytes that produce tumor necrosis factor interact with cerebral endothelial cells to activate microglial cells and promote sickness behavior. Platelets regulate inflammation, and aggregates of monocytes and platelets are increased in the circulation of patients with liver disease. We investigated the role of platelets in inducing inflammatory features of circulating monocytes and promoting sickness behaviors in mice with cholestatic liver injury. METHODS: We performed bile-duct ligations or sham surgeries on C57BL/6 or toll-like receptor 4 (TLR4)-knockout mice to induce liver inflammation. Liver inflammation was also induced in a separate group of mice by administration of concanavalin A. Circulating platelets, aggregates of monocytes and platelets, and activation of microglial cells were measured by flow cytometry. To deplete platelets, mice were given anti-thrombocyte serum or normal rabbit serum (control) 4 days after surgery. Interactions between monocytes and cerebral endothelial cells were analyzed by intravital microscopy. Sickness behaviors were quantified based on time spent by adult mice engaging in social behaviors toward a juvenile mouse, compared with time spent in nonsocial behavior or remaining immobile. RESULTS: Aggregates of monocytes and platelets in circulation of mice increased significantly following bile-duct ligation. Platelet-monocyte interactions were required for activation of inflammatory monocytes and production of tumor necrosis factor. Platelet depletion greatly reduced adhesive interactions between inflammatory monocytes and adhesive interactions with cerebral endothelial cells and activation of the microglia, as well as development of sickness behavior. Furthermore, TLR4 signaling was important for aggregation of monocytes and platelets, and development of sickness behavior following bile-duct ligation. These findings were confirmed in mice with concanavalin A-induced liver injury. CONCLUSIONS: In mice with liver inflammation, we found TLR4 and aggregates of monocytes and platelets to regulate microglial activation and development of sickness behavior. These findings might lead to new therapeutic strategies for liver disease-associated symptoms.


Assuntos
Comportamento Animal , Plaquetas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/sangue , Colestase/sangue , Comportamento de Doença , Monócitos/metabolismo , Animais , Plaquetas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/psicologia , Colestase/genética , Colestase/imunologia , Colestase/psicologia , Concanavalina A , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Microglia/metabolismo , Monócitos/imunologia , Ativação Plaquetária , Comportamento Social , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
11.
Curr Top Behav Neurosci ; 31: 73-94, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27677781

RESUMO

A growing body of evidence now highlights a key role for inflammation in mediating sickness behaviors and depression. Systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and chronic liver disease have high comorbidity with depression. How the periphery communicates with the brain to mediate changes in neurotransmission and thereby behavior is not completely understood. Traditional routes of communication between the periphery and the brain involve neural and humoral pathways with TNFα, IL-1ß, and IL-6 being the three main cytokines that have primarily been implicated in mediating signaling via these pathways. However, in recent years communication via peripheral immune-cell-to-brain and the gut-microbiota-to-brain routes have received increasing attention for their ability to modulate brain function. In this chapter we discuss periphery-to-brain communication pathways and their potential role in mediating inflammation-associated sickness behaviors and depression.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Transtorno Depressivo/metabolismo , Microbioma Gastrointestinal/fisiologia , Comportamento de Doença/fisiologia , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/imunologia , Transtorno Depressivo/imunologia , Humanos , Inflamação/imunologia
12.
J Neurosci ; 35(30): 10821-30, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224864

RESUMO

Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. SIGNIFICANCE STATEMENT: This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life.


Assuntos
Encéfalo/efeitos dos fármacos , Comportamento de Doença/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Probióticos/farmacologia , Animais , Comportamento Animal , Encéfalo/imunologia , Modelos Animais de Doenças , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Hepatol ; 62(6): 1272-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25640062

RESUMO

BACKGROUND & AIMS: Cirrhosis is associated with blunted cardiovascular response to stimuli such as hemorrhage, but the mechanism remains unclear. We aimed to clarify the role of endocannabinoids in blunted hemorrhage response in cirrhotic rats. METHODS: Cirrhosis was induced by bile duct ligation (BDL). Hemodynamics were measured. Cannabinoid receptor-1 (CB1) antagonist, AM251, and macrophage inhibitor gadolinium chloride (GdCl3) were administered. Myocardial levels of anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were measured and resident monocytes and macrophages quantified by immunohistochemistry. Isolated cardiomyocyte contractility was measured before and after incubation with monocytes from BDL and sham controls. RESULTS: Hemorrhage significantly decreased arterial pressure and left ventricular dP/dT. After hemorrhage, these changes quickly reversed in controls, but were severely prolonged in BDL rats. Chronic AM251 treatment restored this impaired response. AEA and 2-AG levels were increased in BDL hearts and further increased after hemorrhage. Sham hearts showed virtually no monocytes or macrophages before or after hemorrhage, whereas BDL hearts had significantly more white blood cells which further increased after hemorrhage. GdCl3 treatment significantly reduced cardiac endocannabinoid levels both at baseline and after hemorrhage. This treatment also restored cardiovascular response to hemorrhage in BDL rats but did not affect sham controls. Monocytes isolated from BDL rats more potently inhibited cardiomyocyte contractility than sham control monocytes. CONCLUSIONS: The cirrhotic heart showed increased monocyte recruitment and endocannabinoid levels. CB1 blockade or GdCl3 treatment restored blunted cardiovascular response to hemorrhage. Endocannabinoids released by monocytes blunt cardiac response to hemorrhage. Preventing monocyte recruitment or blocking endocannabinoid signaling may improve cardiovascular homeostasis in cirrhosis.


Assuntos
Endocanabinoides/fisiologia , Hemorragia/fisiopatologia , Cirrose Hepática/fisiopatologia , Contração Miocárdica/fisiologia , Animais , Ácidos Araquidônicos/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Débito Cardíaco/efeitos dos fármacos , Débito Cardíaco/fisiologia , Endocanabinoides/metabolismo , Gadolínio/farmacologia , Glicerídeos/metabolismo , Hemorragia/complicações , Cirrose Hepática/complicações , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Macrófagos/fisiologia , Masculino , Monócitos/efeitos dos fármacos , Monócitos/patologia , Monócitos/fisiologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
14.
Brain Behav Immun ; 35: 9-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140301

RESUMO

Chronic inflammatory liver diseases are often accompanied by behavior alterations including fatigue, mood disorders, cognitive dysfunction and sleep disturbances. These altered behaviors can adversely affect patient quality of life. The communication pathways between the inflamed liver and the brain that mediate changes in central neural activity leading to behavior alterations during liver inflammation are poorly understood. Neural and humoral communication pathways have been most commonly implicated as driving peripheral inflammation to brain signaling. Classically, the cytokines TNFα, IL-1ß and IL-6 have received the greatest scientific attention as potential mediators of this communication pathway. In mice with liver inflammation we have identified a novel immune-mediated liver-to-brain communication pathway whereby CCR2(+) monocytes found within the peripheral circulation transmigrate into the brain parenchyma in response to MCP-1/CCL2 expressing activated microglia. Inhibition of cerebral monocyte infiltration in these mice significantly improved liver inflammation associated sickness behaviors. Importantly, in recent work we have found that at an earlier time point, when cerebral monocyte infiltration is not evident in mice with liver inflammation, increased monocyte:cerebral endothelial cell adhesive interactions are observed using intravital microscopy of the brain. These monocyte:cerebral endothelial cell adhesive interactions are P-selectin mediated, and inhibition of these interactions attenuated microglial activation and sickness behavior development. Delineating the pathways that the periphery uses to communicate with the brain during inflammatory liver diseases, and the central neurotransmitter systems that are altered through these communication pathways (e.g., serotonin, corticotrophin releasing hormone) to give rise to liver inflammation-associated sickness behaviors, will allow for the identification of novel therapeutic targets to decrease the burden of debilitating symptoms in these patients.


Assuntos
Encéfalo/imunologia , Fadiga/imunologia , Hepatite/imunologia , Fígado/imunologia , Transtornos do Humor/imunologia , Neuroimunomodulação , Animais , Fadiga/fisiopatologia , Hepatite/fisiopatologia , Humanos , Camundongos , Transtornos do Humor/fisiopatologia , Ratos
15.
J Neurosci ; 33(37): 14878-88, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24027287

RESUMO

Sickness behaviors, such as fatigue, mood alterations, and cognitive dysfunction, which result from changes in central neurotransmission, are prevalent in systemic inflammatory diseases and greatly impact patient quality of life. Although, microglia (resident cerebral immune cells) and cytokines (e.g., TNFα) are associated with changes in central neurotransmission, the link between peripheral organ inflammation, circulating cytokine signaling, and microglial activation remains poorly understood. Here we demonstrate, using cerebral intravital microscopy, that in response to liver inflammation, there is increased monocyte specific rolling and adhesion along cerebral endothelial cells (CECs). Peripheral TNFα-TNFR1 signaling and the adhesion molecule P-selectin are central mediators of these monocyte-CEC adhesive interactions which were found to be closely associated with microglial activation, decreased central neural excitability and sickness behavior development. Similar monocyte-CEC adhesive interactions were also observed in another mouse model of peripheral organ inflammation (i.e., 2,4-dinitrobenzene sulfonic acid-induced colitis). Our observations provide a clear link between peripheral organ inflammation and cerebral changes that impact behavior, which can potentially allow for novel therapeutic interventions in patients with systemic inflammatory diseases.


Assuntos
Adesão Celular/fisiologia , Córtex Cerebral/patologia , Comportamento de Doença/fisiologia , Inflamação/patologia , Monócitos/metabolismo , Selectina-P/metabolismo , Alanina Transaminase/metabolismo , Animais , Colestase/complicações , Colestase/patologia , Colite/induzido quimicamente , Colite/patologia , Citocinas/imunologia , Citocinas/metabolismo , Dinitrofluorbenzeno/análogos & derivados , Dinitrofluorbenzeno/toxicidade , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Muramidase/genética , Selectina-P/imunologia , Pentilenotetrazol/toxicidade
16.
J Hepatol ; 56(3): 626-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22027577

RESUMO

BACKGROUND & AIMS: Cholestatic liver diseases are commonly accompanied by debilitating symptoms, collectively termed sickness behaviours. Regulatory T cells (T(regs)) can suppress inflammation; however, a role for T(regs) in modulating sickness behaviours has not been evaluated. METHODS: A mouse model of cholestatic liver injury due to bile duct ligation (BDL) was used to study the role of T(regs) in sickness behaviour development. RESULTS: BDL mice developed reproducible sickness behaviours, as assessed in a social investigation paradigm, characterized by decreased social investigative behaviour and increased immobility. Depletion of peripheral T(regs) in BDL mice worsened BDL-associated sickness behaviours, whereas infusion of T(regs) improved these behaviours; however, liver injury severity was not altered by T(reg) manipulation. Hepatic IL-6 mRNA and circulating IL-6 levels were elevated in BDL vs. control mice, and were elevated further in T(reg)-depleted BDL mice, but were decreased after infusion of T(regs) in BDL mice. IL-6 knock out (KO) BDL mice exhibited a marked reduction in sickness behaviours, compared to wildtype BDL mice. Furthermore, IL-6 KO BDL mice injected with rmIL-6 displayed sickness behaviours similar to wildtype BDL mice, whereas saline injection did not alter behaviour in IL-6 KO BDL mice. BDL was associated with increased hippocampal cerebral endothelial cell p-STAT3 expression, which was significantly reduced in IL-6 KO BDL mice. CONCLUSIONS: T(regs) modulate sickness behaviour development in the setting of cholestatic liver injury, driven mainly through T(reg) inhibition of circulating monocyte and hepatic IL-6 production, and subsequent signalling via circulating IL-6 acting at the level of the cerebral endothelium.


Assuntos
Comportamento Animal/fisiologia , Colestase/imunologia , Comportamento de Doença/fisiologia , Fígado/imunologia , Linfócitos T Reguladores/imunologia , Animais , Encéfalo/imunologia , Modelos Animais de Doenças , Expressão Gênica/imunologia , Interleucina-6/sangue , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/transplante
17.
Am J Physiol Gastrointest Liver Physiol ; 301(5): G749-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21868631

RESUMO

It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including chronic inflammatory liver diseases, are associated with changes in central neural transmission that result in alterations in behavior. These behavioral changes include sickness behaviors, such as fatigue, cognitive dysfunction, mood disorders, and sleep disturbances. While such behaviors have a significant impact on quality of life, the changes within the brain and the communication pathways between the liver and the brain that give rise to changes in central neural activity are not fully understood. Traditionally, neural and humoral communication pathways have been described, with the three cytokines TNFα, IL-1ß, and IL-6 receiving the most attention in mediating communication between the periphery and the brain, in the setting of peripheral inflammation. However, more recently, we described an immune-mediated communication pathway in experimentally induced liver inflammation whereby, in response to activation of resident immune cells in the brain (i.e., the microglia), peripheral circulating monocytes transmigrate into the brain, leading to development of sickness behaviors. These signaling pathways drive changes in behavior by altering central neurotransmitter systems. Specifically, changes in serotonergic and corticotropin-releasing hormone neurotransmission have been demonstrated and implicated in liver inflammation-associated sickness behaviors. Understanding how the liver communicates with the brain in the setting of chronic inflammatory liver diseases will help delineate novel therapeutic targets that can reduce the burden of symptoms in patients with liver disease.


Assuntos
Encéfalo/fisiopatologia , Inflamação/fisiopatologia , Fígado/fisiopatologia , Humanos , Comportamento de Doença , Sistema Imunitário/fisiopatologia
18.
J Neurosci ; 29(7): 2089-102, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19228962

RESUMO

In inflammatory diseases occurring outside the CNS, communication between the periphery and the brain via humoral and/or neural routes results in central neural changes and associated behavioral alterations. We have recently identified another immune-to-CNS communication pathway in the setting of organ-centered peripheral inflammation: namely, the entrance of immune cells into the brain. In our current study, using a mouse model of inflammatory liver injury, we have confirmed the significant infiltration of activated monocytes into the brain in mice with hepatic inflammation and have defined the mechanism that mediates this trafficking of monocytes. Specifically, we show that in the presence of hepatic inflammation, mice demonstrate elevated cerebral monocyte chemoattractant protein (MCP)-1 levels, as well as increased numbers of circulating CCR2-expressing monocytes. Cerebral recruitment of monocytes was abolished in inflamed mice that lacked MCP-1/CCL2 or CCR2. Furthermore, in mice with hepatic inflammation, microglia were activated and produced MCP-1/CCL2 before cerebral monocyte infiltration. Moreover, peripheral tumor necrosis factor (TNF)alpha signaling was required to stimulate microglia to produce MCP-1/CCL2. TNFalpha signaling via TNF receptor 1 (TNFR1) is required for these observed effects since in TNFR1 deficient mice with hepatic inflammation, microglial expression of MCP-1/CCL2 and cerebral monocyte recruitment were both markedly inhibited, whereas there was no inhibition in TNFR2 deficient mice. Our results identify the existence of a novel immune-to-CNS communication pathway occurring in the setting of peripheral organ-centered inflammation which may have specific implications for the development of alterations in cerebral neurotransmission commonly encountered in numerous inflammatory diseases occurring outside the CNS.


Assuntos
Córtex Cerebral/imunologia , Inflamação/imunologia , Microglia/imunologia , Monócitos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/fisiopatologia , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Hepatite/imunologia , Hepatite/fisiopatologia , Comportamento de Doença/fisiologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
19.
J Hepatol ; 44(6): 1141-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16466825

RESUMO

BACKGROUND/AIMS: Cholestasis is associated with naloxone reversible antinociception and opiate receptor antagonists are used clinically to treat pruritus. Pain and pruritus are closely interrelated and opioids modulate both sensations. Therefore, we undertook a series of experiments to characterize opioid-mediated antinociception in cholestasis and determine if it occurs inside or outside the CNS. METHODS: Antinociception scores to both thermal and mechanical stimuli were determined in mice with cholestasis due to bile duct resection vs sham controls. RESULTS: Cholestatic mice demonstrated significant antinociception to both stimuli compared to controls, which was reversible by the opiate receptor antagonist naloxone. The experiments were repeated with a naloxone derivative, which does not cross the blood-brain-barrier (i.e. naloxone methiodide) with similar results, indicating an opioid antinociceptive effect mediated outside of the CNS. Experiments with intraplantar injections of low dose naloxone methiodide confirmed that cholestasis-associated antinociception occurs at the level of cutaneous nerve endings. These findings were supported by findings of increased dermal met-enkephalin expression in cholestatic mice. CONCLUSIONS: Cholestasis in mice is associated with antinociception due to local effects of endogenous opioids (i.e. met-enkephalin) at the level of sensory nerve endings. These findings may have direct implications in the management of cholestasis associated pruritus.


Assuntos
Colestase/fisiopatologia , Peptídeos Opioides/metabolismo , Limiar da Dor , Prurido/fisiopatologia , Receptores Opioides/metabolismo , Animais , Colestase/complicações , Encefalina Metionina/análise , Encefalina Metionina/genética , Encefalina Metionina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos Opioides/análise , Peptídeos Opioides/genética , Prurido/etiologia , RNA Mensageiro/metabolismo , Receptores Opioides/agonistas , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/metabolismo , Pele/química
20.
Hepatology ; 43(1): 154-62, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16374849

RESUMO

Signaling occurs between the liver and brain in cholestatic liver disease, giving rise to sickness behaviors such as fatigue. However, the signaling pathways involved are poorly defined. Circulating inflammatory mediator levels are increased in cholestasis, leading to speculation that they may be capable of activating circulating immune cells that subsequently could gain access to the brain. Indeed, we have identified that at day 10 after bile duct resection-induced cholestasis, there is activation of circulating monocytes that express tumor necrosis factor alpha (TNF-alpha) in conjunction with increased expression of adhesion molecules by cerebral endothelium. Moreover, using intravital microscopy, we have identified markedly enhanced leukocytes rolling along cerebral endothelial cells, mediated by P-selectin, in bile duct-resected (BDR) but not control mice. In addition, we have identified increased infiltration of monocytes (but not lymphocytes) into the brains of BDR mice and found that these infiltrating monocytes produce TNF-alpha. Furthermore, infiltration of TNF-alpha-secreting monocytes into the brains of cholestatic mice is associated with a broad activation of resident brain macrophages to produce TNF-alpha. In conclusion, cholestasis is associated with an activation of cerebral endothelium that recruits TNF-alpha-producing monocytes into the brain. We hypothesize that enhanced TNF-alpha release within the brain may contribute to the development of cholestasis-associated sickness behaviors, including fatigue.


Assuntos
Encéfalo/imunologia , Colestase/imunologia , Fadiga/etiologia , Monócitos/fisiologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Movimento Celular , Colestase/complicações , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Migração e Rolagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Molécula 1 de Adesão de Célula Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...